ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells

نویسندگان

  • SOOK SHIN
  • SANGPHIL OH
  • SEAYOON AN
  • RALF JANKNECHT
چکیده

Prostate cancer is characterized by the recurrent translocation of ETS transcription factors, including ETS variant 1 (ETV1) [also known as ETS-related 81 (ER81)]. Transgenic ETV1 mice develop prostatic intraepithelial neoplasia, yet the mechanisms by which ETV1 exerts its deleterious function remain largely unexplored. In this study, we demonstrated that ETV1 is capable of binding to the matrix metalloproteinase-7 (MMP-7) gene promoter both in vitro and in vivo. ETV1 stimulated the activity of the MMP-7 promoter, which was suppressed upon mutation of two ETV1 binding sites located within 200 base pairs upstream of the MMP-7 transcription start site. ETV1 overexpression in human LNCaP prostate cancer cells induced endogenous MMP-7 gene transcription, whereas ETV1 downregulation had the opposite effect. While MMP-7 overexpression did not influence LNCaP cell proliferation, it increased cell migration, which may be important during later stages of tumorigenesis. Finally, MMP-7 mRNA was significantly overexpressed in human prostate tumors compared to normal tissue. Together, these results showed that MMP-7 is a bona fide ETV1 target gene, implicating that MMP-7 upregulation is partially responsible for the oncogenic effects of ETV1 in the prostate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of ETS family members in prostate cancer tissues and androgen-sensitive and insensitive prostate cancer cell lines.

The ETS family of transcription factors plays important roles in both normal and neoplastic cells for different biological processes such as proliferation, differentiation, development, transformation, apoptosis, migration, invasion and angiogenesis. The 27 ETS factors are probably a part of complex regulatory networks including interactions among family members. In human prostate cancer, rearr...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

Angiogenesis, Metastasis, and the Cellular Microenvironment Oxidative Stress and Prostate Cancer Progression Are Elicited by Membrane-Type 1 Matrix Metalloproteinase

Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer aggressiveness. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced prostate cancer. We show here that MT1-MMP plays a key role in eliciting oxidative stress in prostate cancer cell...

متن کامل

NDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells

Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...

متن کامل

Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase.

Oxidative stress caused by high levels of reactive oxygen species (ROS) has been correlated with prostate cancer aggressiveness. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), which has been implicated in cancer invasion and metastasis, is associated with advanced prostate cancer. We show here that MT1-MMP plays a key role in eliciting oxidative stress in prostate cancer cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013